373 research outputs found

    Inter- and intra-annual bacterioplankton community patterns in a deepwater sub-Arctic region:Persistent high background abundance of putative oil degraders

    Get PDF
    Oil spills at sea are one of the most disastrous anthropogenic pollution events, with the Deepwater Horizon spill providing a testament to how profoundly the health of marine ecosystems and the livelihood of its coastal inhabitants can be severely impacted by spilled oil. The fate of oil in the environment is largely dictated by the presence and activities of natural communities of oil-degrading bacteria

    The pathology of familial breast cancer: The pre-BRCA1/BRCA2 era - historical perspectives

    Get PDF
    A proportion of breast carcinomas develop as a result of a genetic predispostion to the disease. Prior to cloning of the BRCA1 and BRCA2 genes a limited number of studies were carried out to identify specific histopathological characteristics of hereditary breast cancer. These studies are the subject of this review. The main finding was the association of the (atypical) medullary type of breast cancer with a family history; the most important caveat being that medullary breast cancer is found more frequently in young patients. In view of the frequent bilateral occurrence of lobular cancer, this histologic type is also likely to be associated with a predisposing genetic defect. Future investigations will have to test this hypothesis. In addition to mutations in the BRCA1 and BRCA2 genes, there are as yet unidentified genetic defects predisposing to breast cancer development, and histopathology may well help in identifying these genes in the future

    E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer?

    Get PDF
    Loss of heterozygosity at the long arm of chromosome 16 is one of the most frequent genetic events in breast cancer. In the search for tumour suppressor genes that are the target of loss of heterozygosity at 16q, the E-cadherin gene CDH1 was unveiled by the identification of truncating mutations in the retained copy. However, only lobular tumours showed E-cadherin mutations. Whereas investigations are still devoted to finding the target genes in the more frequent ductal breast cancers, other studies suspect the E-cadherin gene to also be the target in this tumour type. The present article discusses the plausibility of those two lines of thought

    Transforming growth factor-beta and mutant p53 conspire to induce metastasis by antagonizing p63: a (ternary) complex affair

    Get PDF
    How and when a tumor acquires metastatic properties remain largely unknown. Recent work has uncovered an intricate new mechanism through which transforming growth factor-beta (TGFβ) acts in concert with oncogenic Ras to antagonize p63-metastasis protective function. p63 inhibition requires the combined action of Ras-activated mutant p53 and TGFβ-induced Smads. Mechanistically, it involves the formation of a p63-Smads-mutant p53 ternary complex. Remarkably, just two of the key downstream targets of p63 turn out to be sufficient as a prognostic tool for breast cancer metastasis. Moreover, the molecular mechanism of this inhibition points to novel therapeutic possibilities

    Mutation analysis of the Fanconi anaemia A gene in breast tumours with loss of heterozygosity at 16q24.3

    Get PDF
    The recently identified Fanconi anaemia A (FAA) gene is located on chromosomal band 16q24.3 within a region that has been frequently reported to show loss of heterozygosity (LOH) in breast cancer. FAA mutation analysis of 19 breast tumours with specific LOH at 16q24.3 was performed. Single-stranded conformational polymorphism (SSCP) analysis on cDNA and genomic DNA, and Southern blotting failed to identify any tumour-specific mutations. Five polymorphisms were identified, but frequencies of occurrence did not deviate from those in a normal control population. Therefore, the FAA gene is not the gene targeted by LOH at 16q24.3 in breast cancer. Another tumour suppressor gene in this chromosomal region remains to be identified. © 1999 Cancer Research Campaig

    The E-cadherin repressor slug and progression of human extrahepatic hilar cholangiocarcinoma

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>This study explored the expression and function of Slug in human extrahepatic hilar cholangiocarcinoma (EHC) to identify its role in tumor progression.</p> <p>Methods</p> <p>The expression of Snail and Slug mRNA in 52 human tissue samples of EHC was investigated. The mRNA of Snail and Slug were quantified using reverse transcriptase-PCR, and correlations with E-cadherin expression and clinicopathological factors were investigated. We then investigated transfection of Slug cDNA in endogenous E-cadherin-positive human EHC FRH0201 cells, selectively induced the loss of E-cadherin protein expression, and then small interfering RNA (siRNA) for inhibition of Slug expression in endogenous Slug-positive human EHC QBC939 cells, selectively induced the loss of Slug protein expression. A Boyden chamber transwell assay was used for invasion.</p> <p>Results</p> <p>Slug mRNA was overexpressed in 18 cases (34.6%) of EHC compared with adjacent noncancerous tissue. E-Cadherin protein expression determined in the same 52 cases by immunohistochemistry was significantly down-regulated in those cases with Slug mRNA overexpression (P = 0.0001). The tumor and nontumor ratio of Slug mRNA was correlated with nodal metastasis(p = 0.0102), distant metastasis (p = 0.0001)and Survival time(p = 0.0443). However, Snail mRNA correlated with neither E-cadherin expression nor tumor invasiveness. By inhibiting Slug expression by RNA interference, we found that reduced Slug levels upregulated E-cadherin and decreased invasion in QBC939 cell. When the QBC939 cells was infected with Slug cDNA,, significant E-cadherin was downregulated and increased invasion in QBC939 cell.</p> <p>Conclusions</p> <p>The results suggested that Slug expression plays an important role in both the regulation of E-cadherin expression and in the acquisition of invasive potential in human EHC. Slug is possibly a potential target for an antitumor therapy blocking the functions of invasion and metastasis in human EHCs.</p

    E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis.

    Get PDF
    In breast cancer, inactivating point mutations in the E-cadherin gene are frequently found in invasive lobular carcinoma (ILC) but never in invasive ductal carcinoma (IDC). Lobular carcinoma in situ (LCIS) adjacent to ILC has previously been shown to lack E-cadherin expression, but whether LCIS without adjacent invasive carcinoma also lacks E-cadherin expression and whether the gene mutations present in ILC are already present in LCIS is not known. We report here that E-cadherin expression is absent in six cases of LCIS and present in 150 cases of ductal carcinoma in situ (DCIS), both without an adjacent invasive component. Furthermore, using mutation analysis, we could demonstrate the presence of the same truncating mutations and loss of heterozygosity (LOH) of the wild-type E-cadherin in the LCIS component and in the adjacent ILC. Our results indicate that E-cadherin is a very early target gene in lobular breast carcinogenesis and plays a tumour-suppressive role, additional to the previously suggested invasion-suppressive role

    Alterations of E-cadherin and β-catenin in gastric cancer

    Get PDF
    BACKGROUND: The E-cadherin-catenin complex plays a crucial role in epithelial cell-cell adhesion and in the maintenance of tissue architecture. Perturbation in the expression or function of this complex results in loss of intercellular adhesion, with possible consequent cell transformation and tumour progression. METHODS: We studied the alterations of E-cadherin and β-catenin in a set of 50 primary gastric tumours by using loss of heterozygosity (LOH) analysis, gene mutation screening, detection of aberrant transcripts and immunohistochemistry (IHC). RESULTS: A high frequency (75%) of LOH was detected at 16q22.1 containing E-cadherin locus. Three cases (6%) showed the identical missense mutation, A592T. This mutation is not likely to contribute strongly to the carcinogenesis of gastric cancer, because a low frequency (1.6%) of this mutation was also found in 187 normal individuals. We also detected a low frequency (0.36%, 0%) of this mutation in 280 breast tumours and 444 other tumours, including colon and rectum, lung, endometrium, ovary, testis, kidney, thyroid carcinomas and sarcomas, respectively. We also analyzed the aberrant E-cadherin mRNAs in the gastric tumours and found that 7 tumours (18%) had aberrant mRNAs in addition to the normal mRNA. These aberrant mRNAs may produce abnormal E-cadherin molecules, resulting in weak cell-cell adhesion and invasive behaviour of carcinoma cells. Reduced expression of E-cadherin and β-catenin was identified at the frequency of 42% and 28%, respectively. Specially, 11 tumours (22%) exhibited positive cytoplasmic staining for β-catenin IHC. An association was found between reduced expression of E-cadherin and β-catenin. Moreover, an association was detected between reduced expression of E-cadherin and diffuse histotype. CONCLUSION: Our results support the hypothesis that alterations of E-cadherin and β-catenin play a role in the initiation and progression of gastric cancer

    Imaging the Impact of Chemically Inducible Proteins on Cellular Dynamics In Vivo

    Get PDF
    The analysis of dynamic events in the tumor microenvironment during cancer progression is limited by the complexity of current in vivo imaging models. This is coupled with an inability to rapidly modulate and visualize protein activity in real time and to understand the consequence of these perturbations in vivo. We developed an intravital imaging approach that allows the rapid induction and subsequent depletion of target protein levels within human cancer xenografts while assessing the impact on cell behavior and morphology in real time. A conditionally stabilized fluorescent E-cadherin chimera was expressed in metastatic breast cancer cells, and the impact of E-cadherin induction and depletion was visualized using real-time confocal microscopy in a xenograft avian embryo model. We demonstrate the assessment of protein localization, cell morphology and migration in cells undergoing epithelial-mesenchymal and mesenchymal-epithelial transitions in breast tumors. This technique allows for precise control over protein activity in vivo while permitting the temporal analysis of dynamic biophysical parameters
    • …
    corecore